New leadership at MIT’s Center for Biomedical Innovation

As it continues in its mission to improve global health through the development and implementation of biomedical innovation, the MIT Center for Biomedical Innovation (CBI) today announced changes to its leadership team: Stacy Springs has been named executive director, and Professor Richard Braatz has joined as the center’s new associate faculty director.

The change in leadership comes at a time of rapid development in new therapeutic modalities, growing concern over global access to biologic medicines and healthy food, and widespread interest in applying computational tools and multi-disciplinary approaches to address long-standing biomedical challenges.

“This marks an exciting new chapter for the CBI,” says faculty director Anthony J. Sinskey, professor of biology, who cofounded CBI in 2005. “As I look back at almost 20 years of CBI history, I see an exponential growth in our activities, educational offerings, and impact.”

The center’s collaborative research model accelerates innovation in biotechnology and biomedical research, drawing on the expertise of faculty and researchers in MIT’s schools of Engineering and Science, the MIT Schwarzman College of Computing, and the MIT Sloan School of Management.

Springs steps into the role of executive director having previously served as senior director of programs for CBI and as executive director of CBI’s Biomanufacturing Program and its Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB). She succeeds Gigi Hirsch, who founded the NEW Drug Development ParadIGmS (NEWDIGS) Initiative at CBI in 2009. Hirsch and NEWDIGS have now moved to Tufts Medical Center, establishing a headquarters at the new Center for Biomedical System Design within the Institute for Clinical Research and Health Policy Studies there.

Braatz, a chemical engineer whose work is informed by mathematical modeling and computational techniques, conducts research in process data analytics, design, and control of advanced manufacturing systems.

“It’s been great to interact with faculty from across the Institute who have complementary expertise,” says Braatz, the Edwin R. Gilliland Professor in the Department of Chemical Engineering. “Participating in CBI’s workshops has led to fruitful partnerships with companies in tackling industry-wide challenges.”

CBI is housed under the Institute for Data Systems and Society and, specifically, the Sociotechnical Systems Research Center in the MIT Schwarzman College of Computing. CBI is home to two biomanufacturing consortia: the CAACB and the Biomanufacturing Consortium (BioMAN). Through these precompetitive collaborations, CBI researchers work with biomanufacturers and regulators to advance shared interests in biomanufacturing.

In addition, CBI researchers are engaged in several sponsored research programs focused on integrated continuous biomanufacturing capabilities for monoclonal antibodies and vaccines, analytical technologies to measure quality and safety attributes of a variety of biologics, including gene and cell therapies, and rapid-cycle development of virus-like particle vaccines for SARS-CoV-2.

In another significant initiative, CBI researchers are applying data analytics strategies to biomanufacturing problems. “In our smart data analytics project, we are creating new decision support tools and algorithms for biomanufacturing process control and plant-level decision-making. Further, we are leveraging machine learning and natural language processing to improve post-market surveillance studies,” says Springs.

CBI is also working on advanced manufacturing for cell and gene therapies, among other new modalities, and is a part of the Singapore-MIT Alliance for Research and Technology – Critical Analytics for Manufacturing Personalized-Medicine (SMART CAMP). SMART CAMP is an international research effort focused on developing the analytical tools and biological understanding of critical quality attributes that will enable the manufacture and delivery of improved cell therapies to patients.

“This is a crucial time for biomanufacturing and for innovation across the health-care value chain. The collaborative efforts of MIT researchers and consortia members will drive fundamental discovery and inform much-needed progress in industry,” says MIT Vice President for Research Maria Zuber.

“CBI has a track record of engaging with health-care ecosystem challenges. I am confident that under the new leadership, it will continue to inspire MIT, the United States, and the entire world to improve the health of all people,” adds Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing.

Building better batteries, faster

To help combat climate change, many car manufacturers are racing to add more electric vehicles in their lineups. But to convince prospective buyers, manufacturers need to improve how far these cars can go on a single charge. One of their main challenges? Figuring out how to make extremely powerful but lightweight batteries.

Typically, however, it takes decades for scientists to thoroughly test new battery materials, says Pablo Leon, an MIT graduate student in materials science. To accelerate this process, Leon is developing a machine-learning tool for scientists to automate one of the most time-consuming, yet key, steps in evaluating battery materials.

With his tool in hand, Leon plans to help search for new materials to enable the development of powerful and lightweight batteries. Such batteries would not only improve the range of EVs, but they could also unlock potential in other high-power systems, such as solar energy systems that continuously deliver power, even at night.

From a young age, Leon knew he wanted to pursue a PhD, hoping to one day become a professor of engineering, like his father. Growing up in College Station, Texas, home to Texas A&M University, where his father worked, many of Leon’s friends also had parents who were professors or affiliated with the university. Meanwhile, his mom worked outside the university, as a family counselor in a neighboring city.

In college, Leon followed in his father’s and older brother’s footsteps to become a mechanical engineer, earning his bachelor’s degree at Texas A&M. There, he learned how to model the behaviors of mechanical systems, such as a metal spring’s stiffness. But he wanted to delve deeper, down to the level of atoms, to understand exactly where these behaviors come from.

So, when Leon applied to graduate school at MIT, he switched fields to materials science, hoping to satisfy his curiosity. But the transition to a different field was “a really hard process,” Leon says, as he rushed to catch up to his peers.

To help with the transition, Leon sought out a congenial research advisor and found one in Rafael Gómez-Bombarelli, an assistant professor in the Department of Materials Science and Engineering (DMSE). “Because he’s from Spain and my parents are Peruvian, there’s a cultural ease with the way we talk,” Leon says. According to Gómez-Bombarelli, sometimes the two of them even discuss research in Spanish — a “rare treat.” That connection has empowered Leon to freely brainstorm ideas or talk through concerns with his advisor, enabling him to make significant progress in his research.

Leveraging machine learning to research battery materials

Scientists investigating new battery materials generally use computer simulations to understand how different combinations of materials perform. These simulations act as virtual microscopes for batteries, zooming in to see how materials interact at an atomic level. With these details, scientists can understand why certain combinations do better, guiding their search for high-performing materials.

But building accurate computer simulations is extremely time-intensive, taking years and sometimes even decades. “You need to know how every atom interacts with every other atom in your system,” Leon says. To create a computer model of these interactions, scientists first make a rough guess at a model using complex quantum mechanics calculations. They then compare the model with results from real-life experiments, manually tweaking different parts of the model, including the distances between atoms and the strength of chemical bonds, until the simulation matches real life.

With well-studied battery materials, the simulation process is somewhat easier. Scientists can buy simulation software that includes pre-made models, Leon says, but these models often have errors and still require additional tweaking.

To build accurate computer models more quickly, Leon is developing a machine-learning-based tool that can efficiently guide the trial-and-error process. “The hope with our machine learning framework is to not have to rely on proprietary models or do any hand-tuning,” he says. Leon has verified that for well-studied materials, his tool is as accurate as the manual method for building models.

With this system, scientists will have a single, standardized approach for building accurate models in lieu of the patchwork of approaches currently in place, Leon says.

Leon’s tool comes at an opportune time, when many scientists are investigating a new paradigm of batteries: solid-state batteries. Compared to traditional batteries, which contain liquid electrolytes, solid-state batteries are safer, lighter, and easier to manufacture. But creating versions of these batteries that are powerful enough for EVs or renewable energy storage is challenging.

This is largely because in battery chemistry, ions dislike flowing through solids and instead prefer liquids, in which atoms are spaced further apart. Still, scientists believe that with the right combination of materials, solid-state batteries can provide enough electricity for high-power systems, such as EVs. 

Leon plans to use his machine-learning tool to help look for good solid-state battery materials more quickly. After he finds some powerful candidates in simulations, he’ll work with other scientists to test out the new materials in real-world experiments.

Helping students navigate graduate school

To get to where he is today, doing exciting and impactful research, Leon credits his community of family and mentors. Because of his upbringing, Leon knew early on which steps he would need to take to get into graduate school and work toward becoming a professor. And he appreciates the privilege of his position, even more so as a Peruvian American, given that many Latino students are less likely to have access to the same resources. “I understand the academic pipeline in a way that I think a lot of minority groups in academia don’t,” he says.

Now, Leon is helping prospective graduate students from underrepresented backgrounds navigate the pipeline through the DMSE Application Assistance Program. Each fall, he mentors applicants for the DMSE PhD program at MIT, providing feedback on their applications and resumes. The assistance program is student-run and separate from the admissions process.

Knowing firsthand how invaluable mentorship is from his relationship with his advisor, Leon is also heavily involved in mentoring junior PhD students in his department. This past year, he served as the academic chair on his department’s graduate student organization, the Graduate Materials Council. With MIT still experiencing disruptions from Covid-19, Leon noticed a problem with student cohesiveness. “I realized that traditional [informal] modes of communication across [incoming class] years had been cut off,” he says, making it harder for junior students to get advice from their senior peers. “They didn’t have any community to fall back on.”

To help fix this problem, Leon served as a go-to mentor for many junior students. He helped second-year PhD students prepare for their doctoral qualification exam, an often-stressful rite of passage. He also hosted seminars for first-year students to teach them how to make the most of their classes and help them acclimate to the department’s fast-paced classes. For fun, Leon organized an axe-throwing event to further facilitate student cameraderie.

Leon’s efforts were met with success. Now, “newer students are building back the community,” he says, “so I feel like I can take a step back” from being academic chair. He will instead continue mentoring junior students through other programs within the department. He also plans to extend his community-building efforts among faculty and students, facilitating opportunities for students to find good mentors and work on impactful research. With these efforts, Leon hopes to help others along the academic pipeline that he’s become familiar with, journeying together over their PhDs.

Bringing lessons from cybersecurity to the fight against disinformation

Mary Ellen Zurko remembers the feeling of disappointment. Not long after earning her bachelor’s degree from MIT, she was working her first job of evaluating secure computer systems for the U.S. government. The goal was to determine whether systems were compliant with the “Orange Book,” the government’s authoritative manual on cybersecurity at the time. Were the systems technically secure? Yes. In practice? Not so much.  

“There was no concern whatsoever for whether the security demands on end users were at all realistic,” says Zurko. “The notion of a secure system was about the technology, and it assumed perfect, obedient humans.”

That discomfort started her on a track that would define Zurko’s career. In 1996, after a return to MIT for a master’s in computer science, she published an influential paper introducing the term “user-centered security.” It grew into a field of its own, concerned with making sure that cybersecurity is balanced with usability, or else humans might circumvent security protocols and give attackers a foot in the door. Lessons from usable security now surround us, influencing the design of phishing warnings when we visit an insecure site or the invention of the “strength” bar when we type a desired password.

Now a cybersecurity researcher at MIT Lincoln Laboratory, Zurko is still enmeshed in humans’ relationship with computers. Her focus has shifted toward technology to counter influence operations, or attempts by foreign adversaries to deliberately spread false information (disinformation) on social media, with the intent of disrupting U.S. ideals.

In a recent editorial published in IEEE Security & Privacy, Zurko argues that many of the “human problems” within the usable security field have similarities to the problems of tackling disinformation. To some extent, she is facing a similar undertaking as that in her early career: convincing peers that such human issues are cybersecurity issues, too.

“In cybersecurity, attackers use humans as one means to subvert a technical system. Disinformation campaigns are meant to impact human decision-making; they’re sort of the ultimate use of cyber technology to subvert humans,” she says. “Both use computer technology and humans to get to a goal. It’s only the goal that’s different.”

Getting ahead of influence operations

Research in counteracting online influence operations is still young. Three years ago, Lincoln Laboratory initiated a study on the topic to understand its implications for national security. The field has since ballooned, notably since the spread of dangerous, misleading Covid-19 claims online, perpetuated in some cases by China and Russia, as one RAND study found. There is now dedicated funding through the laboratory’s Technology Office toward developing influence operations countermeasures.

“It’s important for us to strengthen our democracy and make all our citizens resilient to the kinds of disinformation campaigns targeted at them by international adversaries, who seek to disrupt our internal processes,” Zurko says.

Like cyberattacks, influence operations often follow a multistep path, called a kill chain, to exploit predictable weaknesses. Studying and reinforcing those weaknesses can work in fighting influence operations, just as they do in cyber defense. Lincoln Laboratory’s efforts are in developing technology to support “source tending,” or reinforcing early stages in the kill chain when adversaries begin to find opportunities for a divisive or misleading narrative and build accounts to amplify it. Source tending helps cue U.S. information-operations personnel of a brewing disinformation campaign.

A couple of approaches at the laboratory are aimed at source tending. One approach is leveraging machine learning to study digital personas, with the intent of identifying when the same person is behind multiple, malicious accounts. Another area is focusing on building computational models that can identify deepfakes, or AI-generated videos and photos created to mislead viewers. Researchers are also developing tools to automatically identify which accounts hold the most influence over a narrative. First, the tools identify a narrative (in one paper, the researchers studied the disinformation campaign against French presidential candidate Emmanuel Macron) and gather data related to that narrative, such as keywords, retweets, and likes. Then, they use an analytical technique called causal network analysis to define and rank the influence of specific accounts — which accounts often generate posts that go viral?

These technologies are feeding into the work that Zurko is leading to develop a counter-influence operations test bed. The goal is to create a safe space to simulate social media environments and test counter-technologies. Most importantly, the test bed will allow human operators to be put into the loop to see how well new technologies help them do their jobs.

“Our military’s information-operations personnel are lacking a way to measure impact. By standing up a test bed, we can use multiple different technologies, in a repeatable fashion, to grow metrics that let us see if these technologies actually make operators more effective in identifying a disinformation campaign and the actors behind it.”

This vision is still aspirational as the team builds up the test bed environment. Simulating social media users and what Zurko calls the “grey cell,” the unwitting participants to online influence, is one of the greatest challenges to emulating real-world conditions. Reconstructing social media platforms is also a challenge; each platform has its own policies for dealing with disinformation and proprietary algorithms that influence disinformation’s reach. For example, The Washington Post reported that Facebook’s algorithm gave “extra value” to news that received anger reactions, making it five times more likely to appear on a user’s news feed — and such content is disproportionately likely to include misinformation. These often-hidden dynamics are important to replicate in a test bed, both to study the spread of fake news and understand the impact of interventions.

Taking a full-system approach

In addition to building a test bed to combine new ideas, Zurko is also advocating for a unified space that disinformation researchers can call their own. Such a space would allow researchers in sociology, psychology, policy, and law to come together and share cross-cutting aspects of their work alongside cybersecurity experts. The best defenses against disinformation will require this diversity of expertise, Zurko says, and “a full-system approach of both human-centered and technical defenses.”

Though this space doesn’t yet exist, it’s likely on the horizon as the field continues to grow. Influence operations research is gaining traction in the cybersecurity world. “Just recently, the top conferences have begun putting disinformation research in their call for papers, which is a real indicator of where things are going,” Zurko says. “But, some people still hold on to the old-school idea that messy humans don’t have anything to do with cybersecurity.”

Despite those sentiments, Zurko still trusts her early observation as a researcher — what cyber technology can do effectively is moderated by how people use it. She wants to continue to design technology, and approach problem-solving, in a way that places humans center-frame. “From the very start, what I loved about cybersecurity is that it’s partly mathematical rigor and partly sitting around the ‘campfire’ telling stories and learning from one another,” Zurko reflects. Disinformation gets its power from humans’ ability to influence each other; that ability may also just be the most powerful defense we have.

New programmable materials can sense their own movements

MIT researchers have developed a method for 3D printing materials with tunable mechanical properties, that sense how they are moving and interacting with the environment. The researchers create these sensing structures using just one material and a single run on a 3D printer.

To accomplish this, the researchers began with 3D-printed lattice materials and incorporated networks of air-filled channels into the structure during the printing process. By measuring how the pressure changes within these channels when the structure is squeezed, bent, or stretched, engineers can receive feedback on how the material is moving.

The method opens opportunities for embedding sensors within architected materials, a class of materials whose mechanical properties are programmed through form and composition. Controlling the geometry of features in architected materials alters their mechanical properties, such as stiffness or toughness. For instance, in cellular structures like the lattices the researchers print, a denser network of cells makes a stiffer structure.

This technique could someday be used to create flexible soft robots with embedded sensors that enable the robots to understand their posture and movements. It might also be used to produce wearable smart devices that provide feedback on how a person is moving or interacting with their environment.

“The idea with this work is that we can take any material that can be 3D-printed and have a simple way to route channels throughout it so we can get sensorization with structure. And if you use really complex materials, then you can have motion, perception, and structure all in one,” says co-lead author Lillian Chin, a graduate student in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

Joining Chin on the paper are co-lead author Ryan Truby, a former CSAIL postdoc who is now as assistant professor at Northwestern University; Annan Zhang, a CSAIL graduate student; and senior author Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science and director of CSAIL. The paper is published today in Science Advances.

Architected materials

The researchers focused their efforts on lattices, a type of “architected material,” which exhibits customizable mechanical properties based solely on its geometry. For instance, changing the size or shape of cells in the lattice makes the material more or less flexible.

While architected materials can exhibit unique properties, integrating sensors within them is challenging given the materials’ often sparse, complex shapes. Placing sensors on the outside of the material is typically a simpler strategy than embedding sensors within the material. However, when sensors are placed on the outside, the feedback they provide may not provide a complete description of how the material is deforming or moving.

Instead, the researchers used 3D printing to incorporate air-filled channels directly into the struts that form the lattice. When the structure is moved or squeezed, those channels deform and the volume of air inside changes. The researchers can measure the corresponding change in pressure with an off-the-shelf pressure sensor, which gives feedback on how the material is deforming.

Because they are incorporated into the material, these “fluidic sensors” offer advantages over conventional sensor materials.

“Sensorizing” structures

The researchers incorporate channels into the structure using digital light processing 3D printing. In this method, the structure is drawn out of a pool of resin and hardened into a precise shape using projected light. An image is projected onto the wet resin and areas struck by the light are cured.

But as the process continues, the resin remains stuck inside the sensor channels. The researchers had to remove excess resin before it was cured, using a mix of pressurized air, vacuum, and intricate cleaning.

They used this process to create several lattice structures and demonstrated how the air-filled channels generated clear feedback when the structures were squeezed and bent.

“Importantly, we only use one material to 3D print our sensorized structures. We bypass the limitations of other multimaterial 3D printing and fabrication methods that are typically considered for patterning similar materials,” says Truby.

Building off these results, they also incorporated sensors into a new class of materials developed for motorized soft robots known as handed shearing auxetics, or HSAs. HSAs can be twisted and stretched simultaneously, which enables them to be used as effective soft robotic actuators. But they are difficult to “sensorize” because of their complex forms.

They 3D printed an HSA soft robot capable of several movements, including bending, twisting, and elongating. They ran the robot through a series of movements for more than 18 hours and used the sensor data to train a neural network that could accurately predict the robot’s motion. 

Chin was impressed by the results — the fluidic sensors were so accurate she had difficulty distinguishing between the signals the researchers sent to the motors and the data that came back from the sensors.

“Materials scientists have been working hard to optimize architected materials for functionality. This seems like a simple, yet really powerful idea to connect what those researchers have been doing with this realm of perception. As soon as we add sensing, then roboticists like me can come in and use this as an active material, not just a passive one,” she says.

“Sensorizing soft robots with continuous skin-like sensors has been an open challenge in the field. This new method provides accurate proprioceptive capabilities for soft robots and opens the door for exploring the world through touch,” says Rus.

In the future, the researchers look forward to finding new applications for this technique, such as creating novel human-machine interfaces or soft devices that have sensing capabilities within the internal structure. Chin is also interested in utilizing machine learning to push the boundaries of tactile sensing for robotics.

“The use of additive manufacturing for directly building robots is attractive. It allows for the complexity I believe is required for generally adaptive systems,” says Robert Shepherd, associate professor at the Sibley School of Mechanical and Aerospace Engineering at Cornell University, who was not involved with this work. “By using the same 3D printing process to build the form, mechanism, and sensing arrays, their process will significantly contribute to researcher’s aiming to build complex robots simply.”

This research was supported, in part, by the National Science Foundation, the Schmidt Science Fellows Program in partnership with the Rhodes Trust, an NSF Graduate Fellowship, and the Fannie and John Hertz Foundation.

Caspar Hare, Georgia Perakis named associate deans of Social and Ethical Responsibilities of Computing

Caspar Hare and Georgia Perakis have been appointed the new associate deans of the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Stephen A. Schwarzman College of Computing. Their new roles will take effect on Sept. 1.

“Infusing social and ethical aspects of computing in academic research and education is a critical component of the college mission,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “I look forward to working with Caspar and Georgia on continuing to develop and advance SERC and its reach across MIT. Their complementary backgrounds and their broad connections across MIT will be invaluable to this next chapter of SERC.”

Caspar Hare

Hare is a professor of philosophy in the Department of Linguistics and Philosophy. A member of the MIT faculty since 2003, his main interests are in ethics, metaphysics, and epistemology. The general theme of his recent work has been to bring ideas about practical rationality and metaphysics to bear on issues in normative ethics and epistemology. He is the author of two books: “On Myself, and Other, Less Important Subjects” (Princeton University Press 2009), about the metaphysics of perspective, and “The Limits of Kindness” (Oxford University Press 2013), about normative ethics.

Georgia Perakis

Perakis is the William F. Pounds Professor of Management and professor of operations research, statistics, and operations management at the MIT Sloan School of Management, where she has been a faculty member since 1998. She investigates the theory and practice of analytics and its role in operations problems and is particularly interested in how to solve complex and practical problems in pricing, revenue management, supply chains, health care, transportation, and energy applications, among other areas. Since 2019, she has been the co-director of the Operations Research Center, an interdepartmental PhD program that jointly reports to MIT Sloan and the MIT Schwarzman College of Computing, a role in which she will remain. Perakis will also assume an associate dean role at MIT Sloan in recognition of her leadership.

Hare and Perakis succeed David Kaiser, the Germeshausen Professor of the History of Science and professor of physics, and Julie Shah, the H.N. Slater Professor of Aeronautics and Astronautics, who will be stepping down from their roles at the conclusion of their three-year term on Aug. 31.

“My deepest thanks to Dave and Julie for their tremendous leadership of SERC and contributions to the college as associate deans,” says Huttenlocher.

SERC impact

As the inaugural associate deans of SERC, Kaiser and Shah have been responsible for advancing a mission to incorporate humanist, social science, social responsibility, and civic perspectives into MIT’s teaching, research, and implementation of computing. In doing so, they have engaged dozens of faculty members and thousands of students from across MIT during these first three years of the initiative.

They have brought together people from a broad array of disciplines to collaborate on crafting original materials such as active learning projects, homework assignments, and in-class demonstrations. A collection of these materials was recently published and is now freely available to the world via MIT OpenCourseWare.

In February 2021, they launched the MIT Case Studies in Social and Ethical Responsibilities of Computing for undergraduate instruction across a range of classes and fields of study. The specially commissioned and peer-reviewed cases are based on original research and are brief by design. Three issues have been published to date and a fourth will be released later this summer. Kaiser will continue to oversee the successful new series as editor.

Last year, 60 undergraduates, graduate students, and postdocs joined a community of SERC Scholars to help advance SERC efforts in the college. The scholars participate in unique opportunities throughout, such as the summer Experiential Ethics program. A multidisciplinary team of graduate students last winter worked with the instructors and teaching assistants of class 6.036 (Introduction to Machine Learning), MIT’s largest machine learning course, to infuse weekly labs with material covering ethical computing, data and model bias, and fairness in machine learning through SERC.

Through efforts such as these, SERC has had a substantial impact at MIT and beyond. Over the course of their tenure, Kaiser and Shah have engaged about 80 faculty members, and more than 2,100 students took courses that included new SERC content in the last year alone. SERC’s reach extended well beyond engineering students, with about 500 exposed to SERC content through courses offered in the School of Humanities, Arts, and Social Sciences, the MIT Sloan School of Management, and the School of Architecture and Planning.

Solving a longstanding conundrum in heat transfer

It is a problem that has beguiled scientists for a century. But, buoyed by a $625,000 Distinguished Early Career Award from the U.S. Department of Energy (DoE), Matteo Bucci, an associate professor in the Department of Nuclear Science and Engineering (NSE), hopes to be close to an answer.

Tackling the boiling crisis

Whether you’re heating a pot of water for pasta or are designing nuclear reactors, one phenomenon — boiling — is vital for efficient execution of both processes.

“Boiling is a very effective heat transfer mechanism; it’s the way to remove large amounts of heat from the surface, which is why it is used in many high-power density applications,” Bucci says. An example use case: nuclear reactors.

To the layperson, boiling appears simple — bubbles form and burst, removing heat. But what if so many bubbles form and coalesce that they form a band of vapor that prevents further heat transfer? Such a problem is a known entity and is labeled the boiling crisis. It would lead to runaway heat, and a failure of fuel rods in nuclear reactors. So “understanding and determining under which conditions the boiling crisis is likely to happen is critical to designing more efficient and cost-competitive nuclear reactors,” Bucci says.

Early work on the boiling crisis dates back nearly a century ago, to 1926. And while much work has been done, “it is clear that we haven’t found an answer,” Bucci says. The boiling crisis remains a challenge because while models abound, the measurement of related phenomena to prove or disprove these models has been difficult. “[Boiling] is a process that happens on a very, very small length scale and over very, very short times,” Bucci says. “We are not able to observe it at the level of detail necessary to understand what really happens and validate hypotheses.”

But, over the past few years, Bucci and his team have been developing diagnostics that can measure the phenomena related to boiling and thereby provide much-needed answers to a classic problem. Diagnostics are anchored in infrared thermometry and a technique using visible light. “By combining these two techniques I think we’re going to be ready to answer standing questions related to heat transfer, we can make our way out of the rabbit hole,” Bucci says. The grant award from the U.S. DoE for Nuclear Energy Projects will aid in this and Bucci’s other research efforts.

An idyllic Italian childhood

Tackling difficult problems is not new territory for Bucci, who grew up in the small town of Città di Castello near Florence, Italy. Bucci’s mother was an elementary school teacher. His father used to have a machine shop, which helped develop Bucci’s scientific bent. “I liked LEGOs a lot when I was a kid. It was a passion,” he adds.

Despite Italy going through a severe pullback from nuclear engineering during his formative years, the subject fascinated Bucci. Job opportunities in the field were uncertain but Bucci decided to dig in. “If I have to do something for the rest of my life, it might as well be something I like,” he jokes. Bucci attended the University of Pisa for undergraduate and graduate studies in nuclear engineering.

His interest in heat transfer mechanisms took root during his doctoral studies, a research subject he pursued in Paris at the French Alternative Energies and Atomic Energy Commission (CEA). It was there that a colleague suggested work on the boiling water crisis. This time Bucci set his sights on NSE at MIT and reached out to Professor Jacopo Buongiorno to inquire about research at the institution. Bucci had to fundraise at CEA to conduct research at MIT. He arrived just a couple of days before the Boston Marathon bombing in 2013 with a round-trip ticket. But Bucci has stayed ever since, moving on to become a research scientist and then associate professor at NSE.

Bucci admits he struggled to adapt to the environment when he first arrived at MIT, but work and friendships with colleagues — he counts NSE’s Guanyu Su and Reza Azizian as among his best friends — helped conquer early worries.

The integration of artificial intelligence

In addition to diagnostics for boiling, Bucci and his team are working on ways of integrating artificial intelligence and experimental research. He is convinced that “the integration of advanced diagnostics, machine learning, and advanced modeling tools will blossom in a decade.”

Bucci’s team is developing an autonomous laboratory for boiling heat transfer experiments. Running on machine learning, the setup decides which experiments to run based on a learning objective the team assigns. “We formulate a question and the machine will answer by optimizing the kinds of experiments that are necessary to answer those questions,” Bucci says, “I honestly think this is the next frontier for boiling,” he adds.

“It’s when you climb a tree and you reach the top, that you realize that the horizon is much more vast and also more beautiful,” Bucci says of his zeal to pursue more research in the field.

Even as he seeks new heights, Bucci has not forgotten his origins. Commemorating Italy’s hosting of the World Cup in 1990, a series of posters showcasing a soccer field fitted into the Roman Colosseum occupies pride of place in his home and office. Created by Alberto Burri, the posters are of sentimental value: The (now deceased) Italian artist also hailed from Bucci’s hometown — Città di Castello.

New algorithm aces university math course questions

Multivariable calculus, differential equations, linear algebra — topics that many MIT students can ace without breaking a sweat — have consistently stumped machine learning models. The best models have only been able to answer elementary or high school-level math questions, and they don’t always find the correct solutions.

Now, a multidisciplinary team of researchers from MIT and elsewhere, led by Iddo Drori, a lecturer in the MIT Department of Electrical Engineering and Computer Science (EECS), has used a neural network model to solve university-level math problems in a few seconds at a human level.

The model also automatically explains solutions and rapidly generates new problems in university math subjects. When the researchers showed these machine-generated questions to university students, the students were unable to tell whether the questions were generated by an algorithm or a human.

This work could be used to streamline content generation for courses, which could be especially useful in large residential courses and massive open online courses (MOOCs) that have thousands of students. The system could also be used as an automated tutor that shows students the steps involved in solving undergraduate math problems.

“We think this will improve higher education,” says Drori, the work’s lead author who is also an adjunct associate professor in the Department of Computer Science at Columbia University, and who will join the faculty at Boston University this summer. “It will help students improve, and it will help teachers create new content, and it could help increase the level of difficulty in some courses. It also allows us to build a graph of questions and courses, which helps us understand the relationship between courses and their pre-requisites, not just by historically contemplating them, but based on data.”

The work is a collaboration including students, researchers, and faculty at MIT, Columbia University, Harvard University, and the University of Waterloo. The senior author is Gilbert Strang, a professor of mathematics at MIT. The research appears this week in the Proceedings of the National Academy of Sciences.

A “eureka” moment

Drori and his students and colleagues have been working on this project for nearly two years. They were finding that models pretrained using text only could not do better than 8 percent accuracy on high school math problems, and those using graph neural networks could ace machine learning course questions but would take a week to train.

Then Drori had what he describes as a “eureka” moment: He decided to try taking questions from undergraduate math courses offered by MIT and one from Columbia University that had never been seen before by a model, turning them into programming tasks, and applying techniques known as program synthesis and few-shot learning. Turning a question into a programming task could be as simple as rewriting the question “find the distance between two points” as “write a program that finds the difference between two points,” or providing a few question-program pairs as examples.

Before feeding those programming tasks to a neural network, however, the researchers added a new step that enabled it to vastly outperform their previous attempts.

In the past, they and others who’ve approached this problem have used a neural network, such as GPT-3, that was pretrained on text only, meaning it was shown millions of examples of text to learn the patterns of natural language. This time, they used a neural network pretrained on text that was also “fine-tuned” on code. This network, called Codex, was produced by OpenAI. Fine-tuning is essentially another pretraining step that can improve the performance of a machine-learning model.

The pretrained model was shown millions of examples of code from online repositories. Because this model’s training data included millions of natural language words as well as millions of lines of code, it learns the relationships between pieces of text and pieces of code.

Many math problems can be solved using a computational graph or tree, but it is difficult to turn a problem written in text into this type of representation, Drori explains. Because this model has learned the relationships between text and code, however, it can turn a text question into code, given just a few question-code examples, and then run the code to answer the problem.

“When you just ask a question in text, it is hard for a machine-learning model to come up with an answer, even though the answer may be in the text,” he says. “This work fills in the that missing piece of using code and program synthesis.”

This work is the first to solve undergraduate math problems and moves the needle from 8 percent accuracy to over 80 percent, Drori adds.

Adding context

Turning math questions into programming tasks is not always simple, Drori says. Some problems require researchers to add context so the neural network can process the question correctly. A student would pick up this context while taking the course, but a neural network doesn’t have this background knowledge unless the researchers specify it.

For instance, they might need to clarify that the “network” in a question’s text refers to “neural networks” rather than “communications networks.” Or they might need to tell the model which programming package to use. They may also need to provide certain definitions; in a question about poker hands, they may need to tell the model that each deck contains 52 cards.

They automatically feed these programming tasks, with the included context and examples, to the pretrained and fine-tuned neural network, which outputs a program that usually produces the correct answer. It was correct for more than 80 percent of the questions.

The researchers also used their model to generate questions by giving the neural network a series of math problems on a topic and then asking it to create a new one.

“In some topics, it surprised us. For example, there were questions about quantum detection of horizontal and vertical lines, and it generated new questions about quantum detection of diagonal lines. So, it is not just generating new questions by replacing values and variables in the existing questions,” Drori says.

Human-generated vs. machine-generated questions

The researchers tested the machine-generated questions by showing them to university students. The researchers gave students 10 questions from each undergraduate math course in a random order; five were created by humans and five were machine-generated.

Students were unable to tell whether the machine-generated questions were produced by an algorithm or a human, and they gave human-generated and machine-generated questions similar marks for level of difficulty and appropriateness for the course.

Drori is quick to point out that this work is not intended to replace human professors.

“Automation is now at 80 percent, but automation will never be 100 percent accurate. Every time you solve something, someone will come up with a harder question. But this work opens the field for people to start solving harder and harder questions with machine learning. We think it will have a great impact on higher education,” he says.

The team is excited by the success of their approach, and have extended the work to handle math proofs, but there are some limitations they plan to tackle. Currently, the model isn’t able to answer questions with a visual component and cannot solve problems that are computationally intractable due to computational complexity.

In addition to overcoming these hurdles, they are working to scale the model up to hundreds of courses. With those hundreds of courses, they will generate more data that can enhance automation and provide insights into course design and curricula.

Using artificial intelligence to control digital manufacturing

Scientists and engineers are constantly developing new materials with unique properties that can be used for 3D printing, but figuring out how to print with these materials can be a complex, costly conundrum.

Often, an expert operator must use manual trial-and-error — possibly making thousands of prints — to determine ideal parameters that consistently print a new material effectively. These parameters include printing speed and how much material the printer deposits.

MIT researchers have now used artificial intelligence to streamline this procedure. They developed a machine-learning system that uses computer vision to watch the manufacturing process and then correct errors in how it handles the material in real-time.

They used simulations to teach a neural network how to adjust printing parameters to minimize error, and then applied that controller to a real 3D printer. Their system printed objects more accurately than all the other 3D printing controllers they compared it to.

The work avoids the prohibitively expensive process of printing thousands or millions of real objects to train the neural network. And it could enable engineers to more easily incorporate novel materials into their prints, which could help them develop objects with special electrical or chemical properties. It could also help technicians make adjustments to the printing process on-the-fly if material or environmental conditions change unexpectedly.

“This project is really the first demonstration of building a manufacturing system that uses machine learning to learn a complex control policy,” says senior author Wojciech Matusik, professor of electrical engineering and computer science at MIT who leads the Computational Design and Fabrication Group (CDFG) within the Computer Science and Artificial Intelligence Laboratory (CSAIL). “If you have manufacturing machines that are more intelligent, they can adapt to the changing environment in the workplace in real-time, to improve the yields or the accuracy of the system. You can squeeze more out of the machine.”

The co-lead authors on the research are Mike Foshey, a mechanical engineer and project manager in the CDFG, and Michal Piovarci, a postdoc at the Institute of Science and Technology in Austria. MIT co-authors include Jie Xu, a graduate student in electrical engineering and computer science, and Timothy Erps, a former technical associate with the CDFG.

Picking parameters

Determining the ideal parameters of a digital manufacturing process can be one of the most expensive parts of the process because so much trial-and-error is required. And once a technician finds a combination that works well, those parameters are only ideal for one specific situation. She has little data on how the material will behave in other environments, on different hardware, or if a new batch exhibits different properties.

Using a machine-learning system is fraught with challenges, too. First, the researchers needed to measure what was happening on the printer in real-time.

To do this, they developed a machine-vision system using two cameras aimed at the nozzle of the 3D printer. The system shines light at material as it is deposited and, based on how much light passes through, calculates the material’s thickness.

“You can think of the vision system as a set of eyes watching the process in real-time,” Foshey says.

The controller would then process images it receives from the vision system and, based on any error it sees, adjust the feed rate and the direction of the printer.

But training a neural network-based controller to understand this manufacturing process is data-intensive, and would require making millions of prints. So, the researchers built a simulator instead.

Successful simulation

To train their controller, they used a process known as reinforcement learning in which the model learns through trial-and-error with a reward. The model was tasked with selecting printing parameters that would create a certain object in a simulated environment. After being shown the expected output, the model was rewarded when the parameters it chose minimized the error between its print and the expected outcome.

In this case, an “error” means the model either dispensed too much material, placing it in areas that should have been left open, or did not dispense enough, leaving open spots that should be filled in. As the model performed more simulated prints, it updated its control policy to maximize the reward, becoming more and more accurate.

However, the real world is messier than a simulation. In practice, conditions typically change due to slight variations or noise in the printing process. So the researchers created a numerical model that approximates noise from the 3D printer. They used this model to add noise to the simulation, which led to more realistic results.

“The interesting thing we found was that, by implementing this noise model, we were able to transfer the control policy that was purely trained in simulation onto hardware without training with any physical experimentation,” Foshey says. “We didn’t need to do any fine-tuning on the actual equipment afterwards.”

When they tested the controller, it printed objects more accurately than any other control method they evaluated. It performed especially well at infill printing, which is printing the interior of an object. Some other controllers deposited so much material that the printed object bulged up, but the researchers’ controller adjusted the printing path so the object stayed level.

Their control policy can even learn how materials spread after being deposited and adjust parameters accordingly.

“We were also able to design control policies that could control for different types of materials on-the-fly. So if you had a manufacturing process out in the field and you wanted to change the material, you wouldn’t have to revalidate the manufacturing process. You could just load the new material and the controller would automatically adjust,” Foshey says.

Now that they have shown the effectiveness of this technique for 3D printing, the researchers want to develop controllers for other manufacturing processes. They’d also like to see how the approach can be modified for scenarios where there are multiple layers of material, or multiple materials being printed at once. In addition, their approach assumed each material has a fixed viscosity (“syrupiness”), but a future iteration could use AI to recognize and adjust for viscosity in real-time.

Additional co-authors on this work include Vahid Babaei, who leads the Artificial Intelligence Aided Design and Manufacturing Group at the Max Planck Institute; Piotr Didyk, associate professor at the University of Lugano in Switzerland; Szymon Rusinkiewicz, the David M. Siegel ’83 Professor of computer science at Princeton University; and Bernd Bickel, professor at the Institute of Science and Technology in Austria.

The work was supported, in part, by the FWF Lise-Meitner program, a European Research Council starting grant, and the U.S. National Science Foundation.

New hardware offers faster computation for artificial intelligence, with much less energy

As scientists push the boundaries of machine learning, the amount of time, energy, and money required to train increasingly complex neural network models is skyrocketing. A new area of artificial intelligence called analog deep learning promises faster computation with a fraction of the energy usage.

Programmable resistors are the key building blocks in analog deep learning, just like transistors are the core elements for digital processors. By repeating arrays of programmable resistors in complex layers, researchers can create a network of analog artificial “neurons” and “synapses” that execute computations just like a digital neural network. This network can then be trained to achieve complex AI tasks like image recognition and natural language processing.

A multidisciplinary team of MIT researchers set out to push the speed limits of a type of human-made analog synapse that they had previously developed. They utilized a practical inorganic material in the fabrication process that enables their devices to run 1 million times faster than previous versions, which is also about 1 million times faster than the synapses in the human brain.

Moreover, this inorganic material also makes the resistor extremely energy-efficient. Unlike materials used in the earlier version of their device, the new material is compatible with silicon fabrication techniques. This change has enabled fabricating devices at the nanometer scale and could pave the way for integration into commercial computing hardware for deep-learning applications.

“With that key insight, and the very powerful nanofabrication techniques we have at MIT.nano, we have been able to put these pieces together and demonstrate that these devices are intrinsically very fast and operate with reasonable voltages,” says senior author Jesús A. del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science (EECS). “This work has really put these devices at a point where they now look really promising for future applications.”

“The working mechanism of the device is electrochemical insertion of the smallest ion, the proton, into an insulating oxide to modulate its electronic conductivity. Because we are working with very thin devices, we could accelerate the motion of this ion by using a strong electric field, and push these ionic devices to the nanosecond operation regime,” explains senior author Bilge Yildiz, the Breene M. Kerr Professor in the departments of Nuclear Science and Engineering and Materials Science and Engineering.

“The action potential in biological cells rises and falls with a timescale of milliseconds, since the voltage difference of about 0.1 volt is constrained by the stability of water,” says senior author Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering, “Here we apply up to 10 volts across a special solid glass film of nanoscale thickness that conducts protons, without permanently damaging it. And the stronger the field, the faster the ionic devices.”

These programmable resistors vastly increase the speed at which a neural network is trained, while drastically reducing the cost and energy to perform that training. This could help scientists develop deep learning models much more quickly, which could then be applied in uses like self-driving cars, fraud detection, or medical image analysis.

“Once you have an analog processor, you will no longer be training networks everyone else is working on. You will be training networks with unprecedented complexities that no one else can afford to, and therefore vastly outperform them all. In other words, this is not a faster car, this is a spacecraft,” adds lead author and MIT postdoc Murat Onen.

Co-authors include Frances M. Ross, the Ellen Swallow Richards Professor in the Department of Materials Science and Engineering; postdocs Nicolas Emond and Baoming Wang; and Difei Zhang, an EECS graduate student. The research is published today in Science.

Accelerating deep learning

Analog deep learning is faster and more energy-efficient than its digital counterpart for two main reasons. “First, computation is performed in memory, so enormous loads of data are not transferred back and forth from memory to a processor.” Analog processors also conduct operations in parallel. If the matrix size expands, an analog processor doesn’t need more time to complete new operations because all computation occurs simultaneously.

The key element of MIT’s new analog processor technology is known as a protonic programmable resistor. These resistors, which are measured in nanometers (one nanometer is one billionth of a meter), are arranged in an array, like a chess board.

In the human brain, learning happens due to the strengthening and weakening of connections between neurons, called synapses. Deep neural networks have long adopted this strategy, where the network weights are programmed through training algorithms. In the case of this new processor, increasing and decreasing the electrical conductance of protonic resistors enables analog machine learning.

The conductance is controlled by the movement of protons. To increase the conductance, more protons are pushed into a channel in the resistor, while to decrease conductance protons are taken out. This is accomplished using an electrolyte (similar to that of a battery) that conducts protons but blocks electrons.

To develop a super-fast and highly energy efficient programmable protonic resistor, the researchers looked to different materials for the electrolyte. While other devices used organic compounds, Onen focused on inorganic phosphosilicate glass (PSG).

PSG is basically silicon dioxide, which is the powdery desiccant material found in tiny bags that come in the box with new furniture to remove moisture. It is studied as a proton conductor under humidified conditions for fuel cells. It is also the most well-known oxide used in silicon processing. To make PSG, a tiny bit of phosphorus is added to the silicon to give it special characteristics for proton conduction.

Onen hypothesized that an optimized PSG could have a high proton conductivity at room temperature without the need for water, which would make it an ideal solid electrolyte for this application. He was right.

Surprising speed

PSG enables ultrafast proton movement because it contains a multitude of nanometer-sized pores whose surfaces provide paths for proton diffusion. It can also withstand very strong, pulsed electric fields. This is critical, Onen explains, because applying more voltage to the device enables protons to move at blinding speeds.

“The speed certainly was surprising. Normally, we would not apply such extreme fields across devices, in order to not turn them into ash. But instead, protons ended up shuttling at immense speeds across the device stack, specifically a million times faster compared to what we had before. And this movement doesn’t damage anything, thanks to the small size and low mass of protons. It is almost like teleporting,” he says.

“The nanosecond timescale means we are close to the ballistic or even quantum tunneling regime for the proton, under such an extreme field,” adds Li.

Because the protons don’t damage the material, the resistor can run for millions of cycles without breaking down. This new electrolyte enabled a programmable protonic resistor that is a million times faster than their previous device and can operate effectively at room temperature, which is important for incorporating it into computing hardware.

Thanks to the insulating properties of PSG, almost no electric current passes through the material as protons move. This makes the device extremely energy efficient, Onen adds.

Now that they have demonstrated the effectiveness of these programmable resistors, the researchers plan to reengineer them for high-volume manufacturing, says del Alamo. Then they can study the properties of resistor arrays and scale them up so they can be embedded into systems.

At the same time, they plan to study the materials to remove bottlenecks that limit the voltage that is required to efficiently transfer the protons to, through, and from the electrolyte.

“Another exciting direction that these ionic devices can enable is energy-efficient hardware to emulate the neural circuits and synaptic plasticity rules that are deduced in neuroscience, beyond analog deep neural networks. We have already started such a collaboration with neuroscience, supported by the MIT Quest for Intelligence,” adds Yildiz.

“The collaboration that we have is going to be essential to innovate in the future. The path forward is still going to be very challenging, but at the same time it is very exciting,” del Alamo says.

“Intercalation reactions such as those found in lithium-ion batteries have been explored extensively for memory devices. This work demonstrates that proton-based memory devices deliver impressive and surprising switching speed and endurance,” says William Chueh, associate professor of materials science and engineering at Stanford University, who was not involved with this research. “It lays the foundation for a new class of memory devices for powering deep learning algorithms.”

“This work demonstrates a significant breakthrough in biologically inspired resistive-memory devices. These all-solid-state protonic devices are based on exquisite atomic-scale control of protons, similar to biological synapses but at orders of magnitude faster rates,” says Elizabeth Dickey, the Teddy & Wilton Hawkins Distinguished Professor and head of the Department of Materials Science and Engineering at Carnegie Mellon University, who was not involved with this work. “I commend the interdisciplinary MIT team for this exciting development, which will enable future-generation computational devices.”

This research is funded, in part, by the MIT-IBM Watson AI Lab.

Q&A: Warehouse robots that feel by sight

More than a decade ago, Ted Adelson set out to create tactile sensors for robots that would give them a sense of touch. The result? A handheld imaging system powerful enough to visualize the raised print on a dollar bill. The technology was spun into GelSight, to answer an industry need for low-cost, high-resolution imaging.

An expert in both human and machine vision, Adelson was pleased to have created something useful. But he never lost sight of his original dream: to endow robots with a sense of touch. In a new Science Hub project with Amazon, he’s back on the case. He plans to build out the GelSight system with added capabilities to sense temperature and vibrations. A professor in MIT’s Department of Brain and Cognitive Sciences, Adelson recently sat down to talk about his work.

Q: What makes the human hand so hard to recreate in a robot?

A: A human finger has soft, sensitive skin, which deforms as it touches things. The question is how to get precise sensing when the sensing surface itself is constantly moving and changing during manipulation.

Q: You’re an expert on human and computer vision. How did touch grab your interest?

A: When my daughters were babies, I was amazed by how skillfully they used their fingers and hands to explore the world. I wanted to understand the way they were gathering information through their sense of touch. Being a vision researcher, I naturally looked for a way to do it with cameras.

Q: How does the GelSight robot finger work? What are its limitations?

A: A camera captures an image of the skin from inside, and a computer vision system calculates the skin’s 3D deformation. GelSight fingers offer excellent tactile acuity, far exceeding that of human fingers. However, the need for an inner optical system limits the sizes and shapes we can achieve today.

Q: How did you come up with the idea of giving a robot finger a sense of touch by, in effect, giving it sight?

A: A camera can tell you about the geometry of the surface it is viewing. By putting a tiny camera inside the finger, we can measure how the skin geometry is changing from point to point. This tells us about tactile properties like force, shape, and texture.

Q: How did your prior work on cameras figure in?

A: My prior research on the appearance of reflective materials helped me engineer the optical properties of the skin. We create a very thin matte membrane and light it with grazing illumination so all the details can be seen.

Q: Did you know there was a market for measuring 3D surfaces?

A: No. My postdoc Kimo Johnson posted a YouTube video showing GelSight’s capabilities about a decade ago. The video went viral, and we got a flood of email with interesting suggested applications. People have since used the technology for measuring the microtexture of shark skin, packed snow, and sanded surfaces. The FBI uses it in forensics to compare spent cartridge casings.

Q: What’s GelSight’s main application?  

A: Industrial inspection. For example, an inspector can press a GelSight sensor against a scratch or bump on an airplane fuselage to measure its exact size and shape in 3D. This application may seem quite different from the original inspiration of baby fingers, but it shows that tactile sensing can have many uses. As for robotics, tactile sensing is mainly a research topic right now, but we expect it to increasingly be useful in industrial robots.

Q: You’re now building in a way to measure temperature and vibrations. How do you do that with a camera? How else will you try to emulate human touch?

A: You can convert temperature to a visual signal that a camera can read by using liquid crystals, the molecules that make mood rings and forehead thermometers change color. For vibrations we will use microphones. We also want to extend the range of shapes a finger can have. Finally, we need to understand how to use the information coming from the finger to improve robotics.

Q: Why are we sensitive to temperature and vibrations, and why is that useful for robotics?

A: Identifying material properties is an important aspect of touch. Sensing temperature helps you tell whether something is metal or wood, and whether it is wet or dry. Vibrations can help you distinguish a slightly textured surface, like unvarnished wood, from a perfectly smooth surface, like wood with a glossy finish.

Q: What’s next?

A: Making a tactile sensor is the first step. Integrating it into a useful finger and hand comes next. Then you have to get the robot to use the hand to perform real-world tasks.

Q: Evolution gave us five fingers and two hands. Will robots have the same?

A: Different robots will have different kinds of hands, optimized for different situations. Big hands, small hands, hands with three fingers or six fingers, and hands we can’t even imagine today. Our goal is to provide the sensing capability, so that the robot can skillfully interact with the world.