A factory for FrEDs at MIT

MIT is famous as a factory of ideas. You could also call MIT a factory for learning. But for one group of students over the past year MIT has been, in fact, a factory.

The team of graduate students designed and built — entirely within an MIT lab — an assembly factory for a low-cost, reconfigurable desktop fiber extrusion system.

The factory was the students’ thesis project in the Master of Engineering in Advanced Manufacturing and Design. The team transformed the fiber (Fr) extrusion (E) device (D), or FrED, from a single $5,400 proof-of-concept unit to 25 units manufactured at a cost of about $200 each — a 96 percent reduction in cost.

The FrEDs are ready to be delivered to advanced manufacturing students in Monterrey, Mexico, as part of a long-term collaboration between Tecnológico de Monterrey and MIT, said Brian Anthony, associate director of MIT.nano and faculty lead for the Industry Immersion Program in Mechanical Engineering, who advised the students.

The devices and the factory are part of a “virtuous cycle of education,” Anthony says. “The devices will be used as a teaching tool in undergraduate and graduate classes at both MIT and Monterrey Tec this academic year, as well as in manufacturing workforce professional education in Mexico. The factory at MIT itself will continue to serve as a platform to teach our students about assembly-line design and other manufacturing concepts.”

“A glue gun on steroids”

The original FrED was built in 2017 by Anthony’s PhD student David Kim. Feed in glue sticks, and the system extrudes, cools, and spools fiber, guided by sensors along the way. The compact, relatively low-cost product teaches students about manufacturing and control systems through a device where they can change various processes to vary the final fiber diameter.

This “glue gun on steroids” is a good tool for both students and professionals, Anthony says, because it represents “a balance between a process that is conceptually easy, but as soon as you can get under the hood a little bit it can be made very complex.”

To extend its usefulness and reach, FrED needed to be even less expensive, easier to assemble, and more user-friendly. That’s where Russel Bradley, Aviva Jesse Levi MNG ’22, Rui Li MNG ’22, and Tanach Rojrungsasithorn MNG ’22 come in.

The graduate student team worked part time in the spring and full time in the summer to build and test a new FrED prototype, figure out a way to manufacture the device at scale, and then set up a supply chain and assembly line to build the 25 units. The new FrED takes about 12 minutes to build out-of-the-box, the team found during user testing.

They divided up the work: Rojrungsasithorn managed the factory and ensured the right equipment was in place, Levi worked on the design of extruding the fiber preform and the overall structure of FrED, Li developed the fiber and diameter measuring systems, and Bradley worked on the device electronics.

The team found several ways to bring down FrED’s cost. To begin with, they switched many of the parts from metal to plastic and used 3D printers to make some parts in-house.

The team experienced some supply chain issues related to the pandemic, but “we sourced a lot of standard parts,” Levi explains. “A lot of the gears that are part of the extrusion system are off-the shelf, you can buy them at Amazon or McMaster-Carr or these standard websites, so that also helped.”

As Li worked on the device’s filament collection system, which contains several gears, he found that the variation in 3D-printed parts “was even more than I expected. It was challenging to see that in the real world versus a textbook.”

The new design reduced the number of microprocessors and motors, and changed the expensive laser micrometer measurement system, replacing it with “a concept that uses cameras and machine learning and machine vision theory instead,” says Bradley.

The team also created a set of 3D design files and standard manufacturing and operating procedures so the students in Monterrey or other places “can replicate our production factory, and later generations [of FrED] can be as close to ours as possible,” Rojrungsasithorn notes.

Setting up the factory taught the team another important lesson: it can be challenging at first to bring individual parts together to work as a system. “Sometimes there are errors that you don’t see before you put everything together,” Bradley says.

Factory futures

The project confirmed for Levi, Li, and Rojrungsasithorn that the next steps in their career lie in manufacturing and design. Levi took a job as a mechanical design engineer at Tesla, Li is working as a mechanical tool design engineer at Intel, and Rojrungsasithorn moved back to Thailand to work in his family’s factory, which makes racks that store parts supplied to car manufacturers.

Bradley is at MIT for one more year, maintaining the factory and using it as a teaching tool in a class about manufacturing systems. Having the factory on campus “is really something special,” he says, as most universities only have makerspace-type facilities to create one or two prototypes.

At Monterrey, the new FrEDs will be used “to teach engineers concepts related to process control, sensors, machine learning, and manufacturing processes,” Anthony adds, with an eye to someday setting up a factory on the campus in Mexico.

Learning on the edge

Microcontrollers, miniature computers that can run simple commands, are the basis for billions of connected devices, from internet-of-things (IoT) devices to sensors in automobiles. But cheap, low-power microcontrollers have extremely limited memory and no operating system, making it challenging to train artificial intelligence models on “edge devices” that work independently from central computing resources.

Training a machine-learning model on an intelligent edge device allows it to adapt to new data and make better predictions. For instance, training a model on a smart keyboard could enable the keyboard to continually learn from the user’s writing. However, the training process requires so much memory that it is typically done using powerful computers at a data center, before the model is deployed on a device. This is more costly and raises privacy issues since user data must be sent to a central server.

To address this problem, researchers at MIT and the MIT-IBM Watson AI Lab developed a new technique that enables on-device training using less than a quarter of a megabyte of memory. Other training solutions designed for connected devices can use more than 500 megabytes of memory, greatly exceeding the 256-kilobyte capacity of most microcontrollers (there are 1,024 kilobytes in one megabyte).

The intelligent algorithms and framework the researchers developed reduce the amount of computation required to train a model, which makes the process faster and more memory efficient. Their technique can be used to train a machine-learning model on a microcontroller in a matter of minutes.

This technique also preserves privacy by keeping data on the device, which could be especially beneficial when data are sensitive, such as in medical applications. It also could enable customization of a model based on the needs of users. Moreover, the framework preserves or improves the accuracy of the model when compared to other training approaches.

“Our study enables IoT devices to not only perform inference but also continuously update the AI models to newly collected data, paving the way for lifelong on-device learning. The low resource utilization makes deep learning more accessible and can have a broader reach, especially for low-power edge devices,” says Song Han, an associate professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the MIT-IBM Watson AI Lab, and senior author of the paper describing this innovation.

Joining Han on the paper are co-lead authors and EECS PhD students Ji Lin and Ligeng Zhu, as well as MIT postdocs Wei-Ming Chen and Wei-Chen Wang, and Chuang Gan, a principal research staff member at the MIT-IBM Watson AI Lab. The research will be presented at the Conference on Neural Information Processing Systems.

Han and his team previously addressed the memory and computational bottlenecks that exist when trying to run machine-learning models on tiny edge devices, as part of their TinyML initiative.

Lightweight training

A common type of machine-learning model is known as a neural network. Loosely based on the human brain, these models contain layers of interconnected nodes, or neurons, that process data to complete a task, such as recognizing people in photos. The model must be trained first, which involves showing it millions of examples so it can learn the task. As it learns, the model increases or decreases the strength of the connections between neurons, which are known as weights.

The model may undergo hundreds of updates as it learns, and the intermediate activations must be stored during each round. In a neural network, activation is the middle layer’s intermediate results. Because there may be millions of weights and activations, training a model requires much more memory than running a pre-trained model, Han explains.

Han and his collaborators employed two algorithmic solutions to make the training process more efficient and less memory-intensive. The first, known as sparse update, uses an algorithm that identifies the most important weights to update at each round of training. The algorithm starts freezing the weights one at a time until it sees the accuracy dip to a set threshold, then it stops. The remaining weights are updated, while the activations corresponding to the frozen weights don’t need to be stored in memory.

“Updating the whole model is very expensive because there are a lot of activations, so people tend to update only the last layer, but as you can imagine, this hurts the accuracy. For our method, we selectively update those important weights and make sure the accuracy is fully preserved,” Han says.

Their second solution involves quantized training and simplifying the weights, which are typically 32 bits. An algorithm rounds the weights so they are only eight bits, through a process known as quantization, which cuts the amount of memory for both training and inference. Inference is the process of applying a model to a dataset and generating a prediction. Then the algorithm applies a technique called quantization-aware scaling (QAS), which acts like a multiplier to adjust the ratio between weight and gradient, to avoid any drop in accuracy that may come from quantized training.

The researchers developed a system, called a tiny training engine, that can run these algorithmic innovations on a simple microcontroller that lacks an operating system. This system changes the order of steps in the training process so more work is completed in the compilation stage, before the model is deployed on the edge device.

“We push a lot of the computation, such as auto-differentiation and graph optimization, to compile time. We also aggressively prune the redundant operators to support sparse updates. Once at runtime, we have much less workload to do on the device,” Han explains.

A successful speedup

Their optimization only required 157 kilobytes of memory to train a machine-learning model on a microcontroller, whereas other techniques designed for lightweight training would still need between 300 and 600 megabytes.

They tested their framework by training a computer vision model to detect people in images. After only 10 minutes of training, it learned to complete the task successfully. Their method was able to train a model more than 20 times faster than other approaches.

Now that they have demonstrated the success of these techniques for computer vision models, the researchers want to apply them to language models and different types of data, such as time-series data. At the same time, they want to use what they’ve learned to shrink the size of larger models without sacrificing accuracy, which could help reduce the carbon footprint of training large-scale machine-learning models.

“AI model adaptation/training on a device, especially on embedded controllers, is an open challenge. This research from MIT has not only successfully demonstrated the capabilities, but also opened up new possibilities for privacy-preserving device personalization in real-time,” says Nilesh Jain, a principal engineer at Intel who was not involved with this work. “Innovations in the publication have broader applicability and will ignite new systems-algorithm co-design research.”

“On-device learning is the next major advance we are working toward for the connected intelligent edge. Professor Song Han’s group has shown great progress in demonstrating the effectiveness of edge devices for training,” adds Jilei Hou, vice president and head of AI research at Qualcomm. “Qualcomm has awarded his team an Innovation Fellowship for further innovation and advancement in this area.”

This work is funded by the National Science Foundation, the MIT-IBM Watson AI Lab, the MIT AI Hardware Program, Amazon, Intel, Qualcomm, Ford Motor Company, and Google.

Neurodegenerative disease can progress in newly identified patterns

Neurodegenerative diseases — like amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease), Alzheimer’s, and Parkinson’s — are complicated, chronic ailments that can present with a variety of symptoms, worsen at different rates, and have many underlying genetic and environmental causes, some of which are unknown. ALS, in particular, affects voluntary muscle movement and is always fatal, but while most people survive for only a few years after diagnosis, others live with the disease for decades. Manifestations of ALS can also vary significantly; often slower disease development correlates with onset in the limbs and affecting fine motor skills, while the more serious, bulbar ALS impacts swallowing, speaking, breathing, and mobility. Therefore, understanding the progression of diseases like ALS is critical to enrollment in clinical trials, analysis of potential interventions, and discovery of root causes.

However, assessing disease evolution is far from straightforward. Current clinical studies typically assume that health declines on a downward linear trajectory on a symptom rating scale, and use these linear models to evaluate whether drugs are slowing disease progression. However, data indicate that ALS often follows nonlinear trajectories, with periods where symptoms are stable alternating with periods when they are rapidly changing. Since data can be sparse, and health assessments often rely on subjective rating metrics measured at uneven time intervals, comparisons across patient populations are difficult. These heterogenous data and progression, in turn, complicate analyses of invention effectiveness and potentially mask disease origin.

Now, a new machine-learning method developed by researchers from MIT, IBM Research, and elsewhere aims to better characterize ALS disease progression patterns to inform clinical trial design.

“There are groups of individuals that share progression patterns. For example, some seem to have really fast-progressing ALS and others that have slow-progressing ALS that varies over time,” says Divya Ramamoorthy PhD ’22, a research specialist at MIT and lead author of a new paper on the work that was published this month in Nature Computational Science. “The question we were asking is: can we use machine learning to identify if, and to what extent, those types of consistent patterns across individuals exist?”

Their technique, indeed, identified discrete and robust clinical patterns in ALS progression, many of which are non-linear. Further, these disease progression subtypes were consistent across patient populations and disease metrics. The team additionally found that their method can be applied to Alzheimer’s and Parkinson’s diseases as well.

Joining Ramamoorthy on the paper are MIT-IBM Watson AI Lab members Ernest Fraenkel, a professor in the MIT Department of Biological Engineering; Research Scientist Soumya Ghosh of IBM Research; and Principal Research Scientist Kenney Ng, also of IBM Research. Additional authors include Kristen Severson PhD ’18, a senior researcher at Microsoft Research and former member of the Watson Lab and of IBM Research; Karen Sachs PhD ’06 of Next Generation Analytics; a team of researchers with Answer ALS; Jonathan D. Glass and Christina N. Fournier of the Emory University School of Medicine; the Pooled Resource Open-Access ALS Clinical Trials Consortium; ALS/MND Natural History Consortium; Todd M. Herrington of Massachusetts General Hospital (MGH) and Harvard Medical School; and James D. Berry of MGH.

Reshaping health decline

After consulting with clinicians, the team of machine learning researchers and neurologists let the data speak for itself. They designed an unsupervised machine-learning model that employed two methods: Gaussian process regression and Dirichlet process clustering. These inferred the health trajectories directly from patient data and automatically grouped similar trajectories together without prescribing the number of clusters or the shape of the curves, forming ALS progression “subtypes.” Their method incorporated prior clinical knowledge in the way of a bias for negative trajectories — consistent with expectations for neurodegenerative disease progressions — but did not assume any linearity. “We know that linearity is not reflective of what’s actually observed,” says Ng. “The methods and models that we use here were more flexible, in the sense that, they capture what was seen in the data,” without the need for expensive labeled data and prescription of parameters.

Primarily, they applied the model to five longitudinal datasets from ALS clinical trials and observational studies. These used the gold standard to measure symptom development: the ALS functional rating scale revised (ALSFRS-R), which captures a global picture of patient neurological impairment but can be a bit of a “messy metric.” Additionally, performance on survivability probabilities, forced vital capacity (a measurement of respiratory function), and subscores of ALSFRS-R, which looks at individual bodily functions, were incorporated.

New regimes of progression and utility

When their population-level model was trained and tested on these metrics, four dominant patterns of disease popped out of the many trajectories — sigmoidal fast progression, stable slow progression, unstable slow progression, and unstable moderate progression — many with strong nonlinear characteristics. Notably, it captured trajectories where patients experienced a sudden loss of ability, called a functional cliff, which would significantly impact treatments, enrollment in clinical trials, and quality of life.

The researchers compared their method against other commonly used linear and nonlinear approaches in the field to separate the contribution of clustering and linearity to the model’s accuracy. The new work outperformed them, even patient-specific models, and found that subtype patterns were consistent across measures. Impressively, when data were withheld, the model was able to interpolate missing values, and, critically, could forecast future health measures. The model could also be trained on one ALSFRS-R dataset and predict cluster membership in others, making it robust, generalizable, and accurate with scarce data. So long as 6-12 months of data were available, health trajectories could be inferred with higher confidence than conventional methods.

The researchers’ approach also provided insights into Alzheimer’s and Parkinson’s diseases, both of which can have a range of symptom presentations and progression. For Alzheimer’s, the new technique could identify distinct disease patterns, in particular variations in the rates of conversion of mild to severe disease. The Parkinson’s analysis demonstrated a relationship between progression trajectories for off-medication scores and disease phenotypes, such as the tremor-dominant or postural instability/gait difficulty forms of Parkinson’s disease.

The work makes significant strides to find the signal amongst the noise in the time-series of complex neurodegenerative disease. “The patterns that we see are reproducible across studies, which I don’t believe had been shown before, and that may have implications for how we subtype the [ALS] disease,” says Fraenkel. As the FDA has been considering the impact of non-linearity in clinical trial designs, the team notes that their work is particularly pertinent.

As new ways to understand disease mechanisms come online, this model provides another tool to pick apart illnesses like ALS, Alzheimer’s, and Parkinson’s from a systems biology perspective.

“We have a lot of molecular data from the same patients, and so our long-term goal is to see whether there are subtypes of the disease,” says Fraenkel, whose lab looks at cellular changes to understand the etiology of diseases and possible targets for cures. “One approach is to start with the symptoms … and see if people with different patterns of disease progression are also different at the molecular level. That might lead you to a therapy. Then there’s the bottom-up approach, where you start with the molecules” and try to reconstruct biological pathways that might be affected. “We’re going [to be tackling this] from both ends … and finding if something meets in the middle.”

This research was supported, in part, by the MIT-IBM Watson AI Lab, the Muscular Dystrophy Association, Department of Veterans Affairs of Research and Development, the Department of Defense, NSF Gradate Research Fellowship Program, Siebel Scholars Fellowship, Answer ALS, the United States Army Medical Research Acquisition Activity, National Institutes of Health, and the NIH/NINDS.

New program to support translational research in AI, data science, and machine learning

The MIT School of Engineering and Pillar VC today announced the MIT-Pillar AI Collective, a one-year pilot program funded by a gift from Pillar VC that will provide seed grants for projects in artificial intelligence, machine learning, and data science with the goal of supporting translational research. The program will support graduate students and postdocs through access to funding, mentorship, and customer discovery.

Administered by the MIT Deshpande Center for Technological Innovation, the MIT-Pillar AI Collective will center on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs will aim to emerge from the program having built minimum viable products, with support from Pillar VC and experienced industry leaders.

“We are grateful for this support from Pillar VC and to join forces to converge the commercialization of translational research in AI, data science, and machine learning, with an emphasis on identifying and cultivating prospective entrepreneurs,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Pillar’s focus on mentorship for our graduate students and postdoctoral researchers, and centering the program within the Deshpande Center, will undoubtedly foster big ideas in AI and create an environment for prospective companies to launch and thrive.” 

Founded by Jamie Goldstein ’89, Pillar VC is committed to growing companies and investing in personal and professional development, coaching, and community.

“Many of the most promising companies of the future are living at MIT in the form of transformational research in the fields of data science, AI, and machine learning,” says Goldstein. “We’re honored by the chance to help unlock this potential and catalyze a new generation of founders by surrounding students and postdoctoral researchers with the resources and mentorship they need to move from the lab to industry.”

The program will launch with the 2022-23 academic year. Grants will be open only to MIT faculty and students, with an emphasis on funding for graduate students in their final year, as well as postdocs. Applications must be submitted by MIT employees with principal investigator status. A selection committee composed of three MIT representatives will include Devavrat Shah, faculty director of the Deshpande Center, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society; the chair of the selection committee; and a representative from the MIT Schwarzman College of Computing. The committee will also include representation from Pillar VC. Funding will be provided for up to nine research teams.

“The Deshpande Center will serve as the perfect home for the new collective, given its focus on moving innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies,” adds Chandrakasan. 

“The Deshpande Center has a 20-year history of guiding new technologies toward commercialization, where they can have a greater impact,” says Shah. “This new collective will help the center expand its own impact by helping more projects realize their market potential and providing more support to researchers in the fast-growing fields of AI, machine learning, and data science.”

Q&A: Global challenges surrounding the deployment of AI

The AI Policy Forum (AIPF) is an initiative of the MIT Schwarzman College of Computing to move the global conversation about the impact of artificial intelligence from principles to practical policy implementation. Formed in late 2020, AIPF brings together leaders in government, business, and academia to develop approaches to address the societal challenges posed by the rapid advances and increasing applicability of AI.

The co-chairs of the AI Policy Forum are Aleksander Madry, the Cadence Design Systems Professor; Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science; and Luis Videgaray, senior lecturer at MIT Sloan School of Management and director of MIT AI Policy for the World Project. Here, they discuss talk some of the key issues facing the AI policy landscape today and the challenges surrounding the deployment of AI. The three are co-organizers of the upcoming AI Policy Forum Summit on Sept. 28, which will further explore the issues discussed here.

Q: Can you talk about the ­ongoing work of the AI Policy Forum and the AI policy landscape generally?

Ozdaglar: There is no shortage of discussion about AI at different venues, but conversations are often high-level, focused on questions of ethics and principles, or on policy problems alone. The approach the AIPF takes to its work is to target specific questions with actionable policy solutions and engage with the stakeholders working directly in these areas. We work “behind the scenes” with smaller focus groups to tackle these challenges and aim to bring visibility to some potential solutions alongside the players working directly on them through larger gatherings.

Q: AI impacts many sectors, which makes us naturally worry about its trustworthiness. Are there any emerging best practices for development and deployment of trustworthy AI?

Madry: The most important thing to understand regarding deploying trustworthy AI is that AI technology isn’t some natural, preordained phenomenon. It is something built by people. People who are making certain design decisions.

We thus need to advance research that can guide these decisions as well as provide more desirable solutions. But we also need to be deliberate and think carefully about the incentives that drive these decisions. 

Now, these incentives stem largely from the business considerations, but not exclusively so. That is, we should also recognize that proper laws and regulations, as well as establishing thoughtful industry standards have a big role to play here too.

Indeed, governments can put in place rules that prioritize the value of deploying AI while being keenly aware of the corresponding downsides, pitfalls, and impossibilities. The design of such rules will be an ongoing and evolving process as the technology continues to improve and change, and we need to adapt to socio-political realities as well.

Q: Perhaps one of the most rapidly evolving domains in AI deployment is in the financial sector. From a policy perspective, how should governments, regulators, and lawmakers make AI work best for consumers in finance?

Videgaray: The financial sector is seeing a number of trends that present policy challenges at the intersection of AI systems. For one, there is the issue of explainability. By law (in the U.S. and in many other countries), lenders need to provide explanations to customers when they take actions deleterious in whatever way, like denial of a loan, to a customer’s interest. However, as financial services increasingly rely on automated systems and machine learning models, the capacity of banks to unpack the “black box” of machine learning to provide that level of mandated explanation becomes tenuous. So how should the finance industry and its regulators adapt to this advance in technology? Perhaps we need new standards and expectations, as well as tools to meet these legal requirements.

Meanwhile, economies of scale and data network effects are leading to a proliferation of AI outsourcing, and more broadly, AI-as-a-service is becoming increasingly common in the finance industry. In particular, we are seeing fintech companies provide the tools for underwriting to other financial institutions — be it large banks or small, local credit unions. What does this segmentation of the supply chain mean for the industry? Who is accountable for the potential problems in AI systems deployed through several layers of outsourcing? How can regulators adapt to guarantee their mandates of financial stability, fairness, and other societal standards?

Q: Social media is one of the most controversial sectors of the economy, resulting in many societal shifts and disruptions around the world. What policies or reforms might be needed to best ensure social media is a force for public good and not public harm?

Ozdaglar: The role of social media in society is of growing concern to many, but the nature of these concerns can vary quite a bit — with some seeing social media as not doing enough to prevent, for example, misinformation and extremism, and others seeing it as unduly silencing certain viewpoints. This lack of unified view on what the problem is impacts the capacity to enact any change. All of that is additionally coupled with the complexities of the legal framework in the U.S. spanning the First Amendment, Section 230 of the Communications Decency Act, and trade laws.

However, these difficulties in regulating social media do not mean that there is nothing to be done. Indeed, regulators have begun to tighten their control over social media companies, both in the United States and abroad, be it through antitrust procedures or other means. In particular, Ofcom in the U.K. and the European Union is already introducing new layers of oversight to platforms. Additionally, some have proposed taxes on online advertising to address the negative externalities caused by current social media business model. So, the policy tools are there, if the political will and proper guidance exists to implement them.

Understanding reality through algorithms

Although Fernanda De La Torre still has several years left in her graduate studies, she’s already dreaming big when it comes to what the future has in store for her.

“I dream of opening up a school one day where I could bring this world of understanding of cognition and perception into places that would never have contact with this,” she says.

It’s that kind of ambitious thinking that’s gotten De La Torre, a doctoral student in MIT’s Department of Brain and Cognitive Sciences, to this point. A recent recipient of the prestigious Paul and Daisy Soros Fellowship for New Americans, De La Torre has found at MIT a supportive, creative research environment that’s allowed her to delve into the cutting-edge science of artificial intelligence. But she’s still driven by an innate curiosity about human imagination and a desire to bring that knowledge to the communities in which she grew up.

An unconventional path to neuroscience

De La Torre’s first exposure to neuroscience wasn’t in the classroom, but in her daily life. As a child, she watched her younger sister struggle with epilepsy. At 12, she crossed into the United States from Mexico illegally to reunite with her mother, exposing her to a whole new language and culture. Once in the States, she had to grapple with her mother’s shifting personality in the midst of an abusive relationship. “All of these different things I was seeing around me drove me to want to better understand how psychology works,” De La Torre says, “to understand how the mind works, and how it is that we can all be in the same environment and feel very different things.”

But finding an outlet for that intellectual curiosity was challenging. As an undocumented immigrant, her access to financial aid was limited. Her high school was also underfunded and lacked elective options. Mentors along the way, though, encouraged the aspiring scientist, and through a program at her school, she was able to take community college courses to fulfill basic educational requirements.

It took an inspiring amount of dedication to her education, but De La Torre made it to Kansas State University for her undergraduate studies, where she majored in computer science and math. At Kansas State, she was able to get her first real taste of research. “I was just fascinated by the questions they were asking and this entire space I hadn’t encountered,” says De La Torre of her experience working in a visual cognition lab and discovering the field of computational neuroscience.

Although Kansas State didn’t have a dedicated neuroscience program, her research experience in cognition led her to a machine learning lab led by William Hsu, a computer science professor. There, De La Torre became enamored by the possibilities of using computation to model the human brain. Hsu’s support also convinced her that a scientific career was a possibility. “He always made me feel like I was capable of tackling big questions,” she says fondly.

With the confidence imparted in her at Kansas State, De La Torre came to MIT in 2019 as a post-baccalaureate student in the lab of Tomaso Poggio, the Eugene McDermott Professor of Brain and Cognitive Sciences and an investigator at the McGovern Institute for Brain Research. With Poggio, also the director of the Center for Brains, Minds and Machines, De La Torre began working on deep-learning theory, an area of machine learning focused on how artificial neural networks modeled on the brain can learn to recognize patterns and learn.

“It’s a very interesting question because we’re starting to use them everywhere,” says De La Torre of neural networks, listing off examples from self-driving cars to medicine. “But, at the same time, we don’t fully understand how these networks can go from knowing nothing and just being a bunch of numbers to outputting things that make sense.”

Her experience as a post-bac was De La Torre’s first real opportunity to apply the technical computer skills she developed as an undergraduate to neuroscience. It was also the first time she could fully focus on research. “That was the first time that I had access to health insurance and a stable salary. That was, in itself, sort of life-changing,” she says. “But on the research side, it was very intimidating at first. I was anxious, and I wasn’t sure that I belonged here.”

Fortunately, De La Torre says she was able to overcome those insecurities, both through a growing unabashed enthusiasm for the field and through the support of Poggio and her other colleagues in MIT’s Department of Brain and Cognitive Sciences. When the opportunity came to apply to the department’s PhD program, she jumped on it. “It was just knowing these kinds of mentors are here and that they cared about their students,” says De La Torre of her decision to stay on at MIT for graduate studies. “That was really meaningful.”

Expanding notions of reality and imagination

In her two years so far in the graduate program, De La Torre’s work has expanded the understanding of neural networks and their applications to the study of the human brain. Working with Guangyu Robert Yang, an associate investigator at the McGovern Institute and an assistant professor in the departments of Brain and Cognitive Sciences and Electrical Engineering and Computer Sciences, she’s engaged in what she describes as more philosophical questions about how one develops a sense of self as an independent being. She’s interested in how that self-consciousness develops and why it might be useful.

De La Torre’s primary advisor, though, is Professor Josh McDermott, who leads the Laboratory for Computational Audition. With McDermott, De La Torre is attempting to understand how the brain integrates vision and sound. While combining sensory inputs may seem like a basic process, there are many unanswered questions about how our brains combine multiple signals into a coherent impression, or percept, of the world. Many of the questions are raised by audiovisual illusions in which what we hear changes what we see. For example, if one sees a video of two discs passing each other, but the clip contains the sound of a collision, the brain will perceive that the discs are bouncing off, rather than passing through each other. Given an ambiguous image, that simple auditory cue is all it takes to create a different perception of reality.

“There’s something interesting happening where our brains are receiving two signals telling us different things and, yet, we have to combine them somehow to make sense of the world,” she says.

De La Torre is using behavioral experiments to probe how the human brain makes sense of multisensory cues to construct a particular perception. To do so, she’s created various scenes of objects interacting in 3D space over different sounds, asking research participants to describe characteristics of the scene. For example, in one experiment, she combines visuals of a block moving across a surface at different speeds with various scraping sounds, asking participants to estimate how rough the surface is. Eventually she hopes to take the experiment into virtual reality, where participants will physically push blocks in response to how rough they perceive the surface to be, rather than just reporting on what they experience.

Once she’s collected data, she’ll move into the modeling phase of the research, evaluating whether multisensory neural networks perceive illusions the way humans do. “What we want to do is model exactly what’s happening,” says De La Torre. “How is it that we’re receiving these two signals, integrating them and, at the same time, using all of our prior knowledge and inferences of physics to really make sense of the world?”

Although her two strands of research with Yang and McDermott may seem distinct, she sees clear connections between the two. Both projects are about grasping what artificial neural networks are capable of and what they tell us about the brain. At a more fundamental level, she says that how the brain perceives the world from different sensory cues might be part of what gives people a sense of self. Sensory perception is about constructing a cohesive, unitary sense of the world from multiple sources of sensory data. Similarly, she argues, “the sense of self is really a combination of actions, plans, goals, emotions, all of these different things that are components of their own, but somehow create a unitary being.”

It’s a fitting sentiment for De La Torre, who has been working to make sense of and integrate different aspects of her own life. Working in the Computational Audition lab, for example, she’s started experimenting with combining electronic music with folk music from her native Mexico, connecting her “two worlds,” as she says. Having the space to undertake those kinds of intellectual explorations, and colleagues who encourage it, is one of De La Torre’s favorite parts of MIT.

“Beyond professors, there’s also a lot of students whose way of thinking just amazes me,” she says. “I see a lot of goodness and excitement for science and a little bit of — it’s not nerdiness, but a love for very niche things — and I just kind of love that.”

Soft robots that grip with the right amoung of force

Tool use has long been a hallmark of human intelligence, as well as a practical problem to solve for a vast array of robotic applications. But machines are still wonky at exerting just the right amount of force to control tools that aren’t rigidly attached to their hands. 

To manipulate said tools more robustly, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with the Toyota Research Institute (TRI), have designed a system that can grasp tools and apply the appropriate amount of force for a given task, like squeegeeing up liquid or writing out a word with a pen. 

The system, dubbed Series Elastic End Effectors, or SEED, uses soft bubble grippers and embedded cameras to map how the grippers deform over a six-dimensional space (think of an airbag inflating and deflating) and apply force to a tool. Using six degrees of freedom, the object can be moved left and right, up or down, back and forth, roll, pitch, and yaw. The closed-loop controller — a self-regulating system that maintains a desired state without human interaction — uses SEED and visuotactile feedback to adjust the position of the robot arm in order to apply the desired force. 

This could be useful, for example, for someone using tools when there’s uncertainty in the height of a table, since a pre-programmed trajectory might miss the table completely. “We’ve been heavily relying on the work of Mason, Raibert, and Craig on what we call a hybrid force position controller,” says Hyung Ju Suh, a PhD student in electrical engineering and computer science at MIT, CSAIL affiliate, and lead author on a new paper about SEED. “That’s the idea, that if you actually had three dimensions to move in when you’re writing on a chalkboard, you want to be able to control position on some of the axes, while controlling force on the other axis.”

Rigid-bodied robots and their counterparts can only take us so far; softness and compliance affords the luxury and ability to deform, to sense the interaction between the tool and the hand.

With SEED, every execution the robot senses is a recent 3D image from the grippers, thereby tracking in real-time how the grippers are changing shape around an object. These images are used to reconstruct the position of the tool, and the robot uses a learned model to map the position of the tool to the measured force. The learned model is obtained using the robot’s previous experience, where it disturbs a force torque sensor to figure out how stiff the bubble grippers are. Now, once the robot has sensed the force, it will compare that with the force that the user commands, and maybe say to itself, “it turns out the force that I’m sensing right now is not quite there. I need to press harder.” It would then move in the direction to increase the force, all done over 6D space. 

During the “squeegee task,” SEED was provided the right amount of force to wipe up some liquid on a plane, where baseline methods struggled to get the right sweep. When asked to put paper to pen, the bot effectively wrote out “MIT,” and it was also able to apply the right amount of force to drive a screw. 

While SEED was aware of the fact that it needs to command the force or torque for a given task, if grasped too hard, the item would inevitably slip, so there’s an upper limit on that exerted hardness. Also, if you’re a stiff robot, you can simulate softer systems than your natural mechanical stiffness — but not the other way around. 

Currently, the system assumes a very specific geometry for the tools: it has to be cylindrical, and there are still many limitations on how it may generalize when it meets new types of shapes. Forthcoming work might involve generalizing the framework to different shapes so it can handle arbitrary tools in the wild. 

“Nobody will be surprised that compliance can help with tools, or that force sensing is a good idea; the question here is where on the robot the compliance should go and how soft it should be,” says paper co-author Russ Tedrake, the Toyota Professor of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering at MIT and a principal investigator at CSAIL. “Here we explore regulating a quite-soft six degree-of-freedom stiffness directly at the hand/tool interface, and show that there are some nice advantages to do that.” 

Suh wrote the paper alongside Naveen Kuppuswamy, a senior research scientist at Toyota Research Institute; Tao Pang, mechanical engineering PhD student at MIT and CSAIL affiliate; Paul Mitiguy and Alex Alspach of the TRI; and Tedrake. They will present the work at the IEEE/RSJ International Conference on Intelligent Robots and Systems conference in October.

Toyota Research Institute provided funds to support this work.

In-home wireless device tracks disease progression in Parkinson’s patients

Parkinson’s disease is the fastest-growing neurological disease, now affecting more than 10 million people worldwide, yet clinicians still face huge challenges in tracking its severity and progression.

Clinicians typically evaluate patients by testing their motor skills and cognitive functions during clinic visits. These semisubjective measurements are often skewed by outside factors — perhaps a patient is tired after a long drive to the hospital. More than 40 percent of individuals with Parkinson’s are never treated by a neurologist or Parkinson’s specialist, often because they live too far from an urban center or have difficulty traveling.

In an effort to address these problems, researchers from MIT and elsewhere demonstrated an in-home device that can monitor a patient’s movement and gait speed, which can be used to evaluate Parkinson’s severity, the progression of the disease, and the patient’s response to medication.

The device, which is about the size of a Wi-Fi router, gathers data passively using radio signals that reflect off the patient’s body as they move around their home. The patient does not need to wear a gadget or change their behavior. (A recent study, for example, showed that this type of device could be used to detect Parkinson’s from a person’s breathing patterns while sleeping.)

The researchers used these devices to conduct a one-year at-home study with 50 participants. They showed that, by using machine-learning algorithms to analyze the troves of data they passively gathered (more than 200,000 gait speed measurements), a clinician could track Parkinson’s progression and medication response more effectively than they would with periodic, in-clinic evaluations.

“By being able to have a device in the home that can monitor a patient and tell the doctor remotely about the progression of the disease, and the patient’s medication response so they can attend to the patient even if the patient can’t come to the clinic — now they have real, reliable information — that actually goes a long way toward improving equity and access,” says senior author Dina Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principle investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic.

The co-lead authors are EECS graduate students Yingcheng Liu and Guo Zhang. The research is published today in Science Translational Medicine.

A human radar

This work utilizes a wireless device previously developed in the Katabi lab that analyzes radio signals that bounce off people’s bodies. It transmits signals that use a tiny fraction of the power of a Wi-Fi router — these super-low-power signals don’t interfere with other wireless devices in the home. While radio signals pass through walls and other solid objects, they are reflected off humans due to the water in our bodies.  

This creates a “human radar” that can track the movement of a person in a room. Radio waves always travel at the same speed, so the length of time it takes the signals to reflect back to the device indicates how the person is moving.

The device incorporates a machine-learning classifier that can pick out the precise radio signals reflected off the patient even when there are other people moving around the room. Advanced algorithms use these movement data to compute gait speed — how fast the person is walking.

Because the device operates in the background and runs all day, every day, it can collect a massive amount of data. The researchers wanted to see if they could apply machine learning to these datasets to gain insights about the disease over time.

They gathered 50 participants, 34 of whom had Parkinson’s, and conducted a one-year study of in-home gait measurements Through the study, the researchers collected more than 200,000 individual measurements that they averaged to smooth out variability due to the conditions irrelevant to the disease. (For example, a patient may hurry up to answer an alarm or walk slower when talking on the phone.)

They used statistical methods to analyze the data and found that in-home gait speed can be used to effectively track Parkinson’s progression and severity. For instance, they showed that gait speed declined almost twice as fast for individuals with Parkinson’s, compared to those without. 

“Monitoring the patient continuously as they move around the room enabled us to get really good measurements of their gait speed. And with so much data, we were able to perform aggregation that allowed us to see very small differences,” Zhang says.

Better, faster results

Drilling down on these variabilities offered some key insights. For instance, the researchers showed that daily fluctuations in a patient’s walking speed correspond with how they are responding to their medication — walking speed may improve after a dose and then begin to decline after a few hours, as the medication impact wears off.

“This enables us to objectively measure how your mobility responds to your medication. Previously, this was very cumbersome to do because this medication effect could only be measured by having the patient keep a journal,” Liu says.

A clinician could use these data to adjust medication dosage more effectively and accurately. This is especially important since drugs used to treat disease symptoms can cause serious side effects if the patient receives too much.

The researchers were able to demonstrate statistically significant results regarding Parkinson’s progression after studying 50 people for just one year. By contrast, an often-cited study by the Michael J. Fox Foundation involved more than 500 individuals and monitored them for more than five years, Katabi says.

“For a pharmaceutical company or a biotech company trying to develop medicines for this disease, this could greatly reduce the burden and cost and speed up the development of new therapies,” she adds.

Katabi credits much of the study’s success to the dedicated team of scientists and clinicians who worked together to tackle the many difficulties that arose along the way. For one, they began the study before the Covid-19 pandemic, so team members initially visited people’s homes to set up the devices. When that was no longer possible, they developed a user-friendly phone app to remotely help participants as they deployed the device at home.

Through the course of the study, they learned to automate processes and reduce effort, especially for the participants and clinical team.

This knowledge will prove useful as they look to deploy devices in at-home studies of other neurological disorders, such as Alzheimer’s, ALS, and Huntington’s. They also want to explore how these methods could be used, in conjunction with other work from the Katabi lab showing that Parkinson’s can be diagnosed by monitoring breathing, to collect a holistic set of markers that could diagnose the disease early and then be used to track and treat it.

“This radio-wave sensor can enable more care (and research) to migrate from hospitals to the home where it is most desired and needed,” says Ray Dorsey, a professor of neurology at the University of Rochester Medical Center, co-author of Ending Parkinson’s, and a co-author of this research paper. “Its potential is just beginning to be seen. We are moving toward a day where we can diagnose and predict disease at home. In the future, we may even be able to predict and ideally prevent events like falls and heart attacks.”

This work is supported, in part, by the National Institutes of Health and the Michael J. Fox Foundation.

Empowering Cambridge youth through data activism

For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

Cross-Cambridge collaboration

Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

A different side of STEAM

The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

From MYSEP to the mayor’s office

Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge Rindge and Latin School students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, „I had a blast visiting the students and learning about their projects.“

Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

“Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.”

Protecting maternal health in Rwanda

The world is facing a maternal health crisis. According to the World Health Organization, approximately 810 women die each day due to preventable causes related to pregnancy and childbirth. Two-thirds of these deaths occur in sub-Saharan Africa. In Rwanda, one of the leading causes of maternal mortality is infected Cesarean section wounds.

An interdisciplinary team of doctors and researchers from MIT, Harvard University, and Partners in Health (PIH) in Rwanda have proposed a solution to address this problem. They have developed a mobile health (mHealth) platform that uses artificial intelligence and real-time computer vision to predict infection in C-section wounds with roughly 90 percent accuracy.

“Early detection of infection is an important issue worldwide, but in low-resource areas such as rural Rwanda, the problem is even more dire due to a lack of trained doctors and the high prevalence of bacterial infections that are resistant to antibiotics,” says Richard Ribon Fletcher ’89, SM ’97, PhD ’02, research scientist in mechanical engineering at MIT and technology lead for the team. “Our idea was to employ mobile phones that could be used by community health workers to visit new mothers in their homes and inspect their wounds to detect infection.”

This summer, the team, which is led by Bethany Hedt-Gauthier, a professor at Harvard Medical School, was awarded the $500,000 first-place prize in the NIH Technology Accelerator Challenge for Maternal Health.

“The lives of women who deliver by Cesarean section in the developing world are compromised by both limited access to quality surgery and postpartum care,” adds Fredrick Kateera, a team member from PIH. “Use of mobile health technologies for early identification, plausible accurate diagnosis of those with surgical site infections within these communities would be a scalable game changer in optimizing women’s health.”

Training algorithms to detect infection

The project’s inception was the result of several chance encounters. In 2017, Fletcher and Hedt-Gauthier bumped into each other on the Washington Metro during an NIH investigator meeting. Hedt-Gauthier, who had been working on research projects in Rwanda for five years at that point, was seeking a solution for the gap in Cesarean care she and her collaborators had encountered in their research. Specifically, she was interested in exploring the use of cell phone cameras as a diagnostic tool.

Fletcher, who leads a group of students in Professor Sanjay Sarma’s AutoID Lab and has spent decades applying phones, machine learning algorithms, and other mobile technologies to global health, was a natural fit for the project.

“Once we realized that these types of image-based algorithms could support home-based care for women after Cesarean delivery, we approached Dr. Fletcher as a collaborator, given his extensive experience in developing mHealth technologies in low- and middle-income settings,” says Hedt-Gauthier.

During that same trip, Hedt-Gauthier serendipitously sat next to Audace Nakeshimana ’20, who was a new MIT student from Rwanda and would later join Fletcher’s team at MIT. With Fletcher’s mentorship, during his senior year, Nakeshimana founded Insightiv, a Rwandan startup that is applying AI algorithms for analysis of clinical images, and was a top grant awardee at the annual MIT IDEAS competition in 2020.

The first step in the project was gathering a database of wound images taken by community health workers in rural Rwanda. They collected over 1,000 images of both infected and non-infected wounds and then trained an algorithm using that data.

A central problem emerged with this first dataset, collected between 2018 and 2019. Many of the photographs were of poor quality.

“The quality of wound images collected by the health workers was highly variable and it required a large amount of manual labor to crop and resample the images. Since these images are used to train the machine learning model, the image quality and variability fundamentally limits the performance of the algorithm,” says Fletcher.

To solve this issue, Fletcher turned to tools he used in previous projects: real-time computer vision and augmented reality.

Improving image quality with real-time image processing

To encourage community health workers to take higher-quality images, Fletcher and the team revised the wound screener mobile app and paired it with a simple paper frame. The frame contained a printed calibration color pattern and another optical pattern that guides the app’s computer vision software.

Health workers are instructed to place the frame over the wound and open the app, which provides real-time feedback on the camera placement. Augmented reality is used by the app to display a green check mark when the phone is in the proper range. Once in range, other parts of the computer vision software will then automatically balance the color, crop the image, and apply transformations to correct for parallax.

“By using real-time computer vision at the time of data collection, we are able to generate beautiful, clean, uniform color-balanced images that can then be used to train our machine learning models, without any need for manual data cleaning or post-processing,” says Fletcher.

Using convolutional neural net (CNN) machine learning models, along with a method called transfer learning, the software has been able to successfully predict infection in C-section wounds with roughly 90 percent accuracy within 10 days of childbirth. Women who are predicted to have an infection through the app are then given a referral to a clinic where they can receive diagnostic bacterial testing and can be prescribed life-saving antibiotics as needed.

The app has been well received by women and community health workers in Rwanda.

“The trust that women have in community health workers, who were a big promoter of the app, meant the mHealth tool was accepted by women in rural areas,” adds Anne Niyigena of PIH.

Using thermal imaging to address algorithmic bias

One of the biggest hurdles to scaling this AI-based technology to a more global audience is algorithmic bias. When trained on a relatively homogenous population, such as that of rural Rwanda, the algorithm performs as expected and can successfully predict infection. But when images of patients of varying skin colors are introduced, the algorithm is less effective.

To tackle this issue, Fletcher used thermal imaging. Simple thermal camera modules, designed to attach to a cell phone, cost approximately $200 and can be used to capture infrared images of wounds. Algorithms can then be trained using the heat patterns of infrared wound images to predict infection. A study published last year showed over a 90 percent prediction accuracy when these thermal images were paired with the app’s CNN algorithm.

While more expensive than simply using the phone’s camera, the thermal image approach could be used to scale the team’s mHealth technology to a more diverse, global population.

“We’re giving the health staff two options: in a homogenous population, like rural Rwanda, they can use their standard phone camera, using the model that has been trained with data from the local population. Otherwise, they can use the more general model which requires the thermal camera attachment,” says Fletcher.

While the current generation of the mobile app uses a cloud-based algorithm to run the infection prediction model, the team is now working on a stand-alone mobile app that does not require internet access, and also looks at all aspects of maternal health, from pregnancy to postpartum.

In addition to developing the library of wound images used in the algorithms, Fletcher is working closely with former student Nakeshimana and his team at Insightiv on the app’s development, and using the Android phones that are locally manufactured in Rwanda. PIH will then conduct user testing and field-based validation in Rwanda.

As the team looks to develop the comprehensive app for maternal health, privacy and data protection are a top priority.

“As we develop and refine these tools, a closer attention must be paid to patients’ data privacy. More data security details should be incorporated so that the tool addresses the gaps it is intended to bridge and maximizes user’s trust, which will eventually favor its adoption at a larger scale,” says Niyigena.

Members of the prize-winning team include: Bethany Hedt-Gauthier from Harvard Medical School; Richard Fletcher from MIT; Robert Riviello from Brigham and Women’s Hospital; Adeline Boatin from Massachusetts General Hospital; Anne Niyigena, Frederick Kateera, Laban Bikorimana, and Vincent Cubaka from PIH in Rwanda; and Audace Nakeshimana ’20, founder of Insightiv.ai.